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Gas disks repel planets
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• Radial drift of 
meter-scale material 
(bottleneck)

• Torques exerted by 
the gas disk leads to 
planetary migration 
(Type I/II migration)



Planetary migration
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• The planet transfers angular 
momentum to the disk at the gas 
resonances associated with its 
potential.

• Loses AM to the exterior LRs, 
moves closer to the star; the gas 
gains AM, moves outwards 
(conversely for ILR).

• The AM transported by the spiral 
wake is deposited through viscosity.

Corotation

m(Ω− ΩP ) = ±κ

Ω = ΩP



Type I migration

■ Outline ■ Introduction & Motivation ■ Methods ■ Results ■ Conclusions

• The torque exerted by 
OLRs is generally larger 
than ILRs.

• The planet migrates 
inwards (~105 yrs for 5 
Mearth).

•For low-mass planets (M 
~ Mearth) no significant 
effect on surface density.

Masset, 2002 

Outer torque

Outer torque

Inner torque



Type II migration
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• At sufficiently high masses, the AM 
flux dominates the viscous flux.

• A surface density depression 
forms around the orbit of the 
planet, resonances are depleted and 
accretion is greatly reduced.

• Orbital migration is slowed down 
and tied to the viscous evolution 
timescale.

Bryden, 1999



Gap formation
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Armitage, 2005

The viscous spreading 
timescale  needs to be 
larger than the timescale 
to open a gap.

q >

(
cs

rpΩp

)2

α1/2



Gap formation
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Gap opening criteria
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• Gap opening bridges Type I 
migration to the slower Type II 
migration.
• It determines the accretion 
rate onto the giant planet.

Masset, 2007 This is crucial to our understanding 
of giant planet formation timescales! 
Are we accounting for everything?



Role of self-gravity
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• Laughlin & Bodenheimer, 1994 found that disks with appropriate ranges 
of Q might be unstable to nonaxisymmetric disturbances, leading to 
mass + angular momentum transport and heating of the disk.

• Nelson & Benz, 2003 found significant discrepancies in the minimum 
gap-opening mass and migration rate with respect to the analytical 
formulas, and depending on self-gravity.

• Baruteau & Masset, 2008 show that self-gravity significantly accelerates 
type I migration.

But self-gravity is often not included to reduce 
computational complexity...

Q =
κcs

πGσ



Role of self-gravity
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• Observed disks are generally not 
very massive (median mass ~ 0.5% M*,  
i.e.  Andrews & Williams 2005); MMSN 
~ 0.03 M*.

• But gravitational instability commonly 
requires 

Andrews & Williams, 2005

Can we still excite Gravitational Instability in moderate to 
low mass disks? Maybe...

Q =
csκ

πGσ
< 1− 1.5 [MD/M! > 0.1− 0.2]



Groove modes
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• Sellwood & Lin, 1989 
discovered a new class of spiral 
instabilities in stellar disks they 
called “groove modes”.

• This violent instability is 
triggered by a groove in the 
phase space distribution of 
particles, which corresponds to 
an annular density depression 
in physical space.
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Feedback cycle in ★ disks
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1. Slow mode
A slow-growing spiral 
packet (i.e. an edge mode) 
becomes unstable and 
propagates in the disk 
with a group velocity;

2. LR particle scattering
The packet reaches one 
of its LRs and scatters 
particles from the 
narrow resonance;



Feedback cycle in ★ disks
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3. Density groove
The wave-particle 
interaction creates a 
groove in surface 
density;

4. Groove mode
A fast-growing groove 
mode is launched (and can 
carve new grooves) → 
feedback cycle



Groove modes in gas disk?
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• The feedback cycle cannot be 
supported in gaseous disks 
because it relies on the wave-
particle interaction at resonances.
• But a gap is naturally carved (and 
mantained) during giant planet 
formation!

GI might depend not only on disk mass and sound 
speed, but also on the density profile...

Can we excite GIs in a low mass disks with a gap?



Program

■ Outline ■ Introduction & Motivation ■ Methods ■ Results ■ Conclusions

• Demonstrate convincingly the 
emergence of groove modes in gas 
disks with gaps, at masses comparable 
to observations.

• Compare to disks without gaps.

• Study the effect of the GI on the 
disk and the gap.

If GIs are excited by grooves even in low-mass disks, then 
they could significantly influence disk evolution.



Methods
• Modal analysis

 Predict growth rate and pattern speed of 
an intrinsic mode of the disk by solving a 
generalized eigenvalue problem, in the 
limit of linear perturbations.  Fast and 
accurate in the linear regime.
Pannatoni & Lau, 1979;  Adams, Ruden and Shu (ARS), 1989

• Nonlinear simulations

 Do a full hydrodynamical simulation, 
measure properties of the emerging 
mode a posteriori.
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Modal analysis
Assume a linear perturbation of the form
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F (r, ϕ, t) = F1(r) exp [i(ωt−mϕ)]
ω = mΩP − iγ

m = 2m = 1

pattern speed growth rate

m = 2m = 0

[F = Σ, u, v,Ψ]



Modal analysis
Solve the equations of hydrodynamics to linear order
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i(ω −mΩ)
σ1

σ0
+

(
1
r

+
1
σ0

dσ0

dr

)
u1 +

du1

dr
− im

r
v1 = 0

i(ω −mΩ)u1 − 2Ωv1 = − d

dr
(Ψ1 + h1)

i(ω −mΩ)v1 +
κ2

2Ω
u1 =

im

r
(Ψ1 + h1)

Ψ1 = −2πG

∫
Km(r, ρ)σ1(ρ)dρ

• Assume spiral arms to be “tightly wrapped” (WKB analysis), 
or

• Solve as a matrix equation on a radial grid, get global modes 
(ARS)



Modal analysis
Combine the set of equations of hydrodynamics in 
terms of operators [Lau & Bertin 1978]: 
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• Rewrite differential and integral operators on a radial grid.

• Getting an accurate estimation of the potential is surprisingly 
hard!

• Get a generalized eigenvalue matrix equation:

L

[
a2
0
σ1

σ0
+ Ψ1

]
+ Ca2

0
σ1

σ0
= 0

Zik(ω)Sk = 0

[solution if ω makes the determinant = 0]

Ψ(R) = −
∫ ∞

0
σ(ρ)ρdρ

∫ 2π

0

dϕ√
R + ρ− 2Rρ cos ϕ2 2



Modal analysis

• Solve the eigenvalue problem for a given m, get a 
variety of solutions for ω.

Zik(ωR,ωI)Sk = 0

ϖR

ϖI

Sk=1..400

pattern speed

growth rate

radial profile

This calculation is not trivial, because need to find the roots 
of the determinant of the real and imaginary parts of a 
400x400 [800x800] matrix simultaneously and with high 
accuracy.
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eigenfunction
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spectrum



“Base” equilibrium model
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We consider a Gaussian density 
profile with a polytropic EOS:

This is the “reference disk” considered by Laughlin & 
Rozyczka (1996) and the model we concentrate on.

Σ(r) = Σ0 exp
(
−(r −R0)2/w

)

c2
s = Kγσγ−1



“Base” equilibrium model
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No pretense of being a 
particularly faithful model for 
protoplanetary disks. 

But it is simple and has the 
advantage of possessing a 
single m = 2 mode clearly 
identifiable both in the linear 
and nonlinear simulations.

Set the normalizations to yield qD = 1, Qmin = 1.22.
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Nonlinear simulations
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• We complement and verify the results of the modal 
analysis by running a hydrodynamical simulation.

• Start with a disk in rotational equilibrium and 
disturb it with a small random perturbation.

• The hydrodynamical simulation can follow the time 
evolution of a spiral mode from the linear growth 
regime all the way to saturation.

• Can measure approximate growth rate and pattern 
speed of the emerging mode.



Nonlinear simulations
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• Solve the equations of continuity and momentum of 
a thin, polytropic, self-gravitating disk.

• Solved on a 256x256, 2-D polar grid; reflective 
boundary conditions.

• Two-dimensional Euler differencing scheme, with 
second-order van Leer-type advection.
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Nonlinear simulations
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• The gravitational potential of the disk is calculated 
by applying the 2-D Fourier convolution theorem.  

• Quantify the growth of a spiral mode by looking at 
the Fourier decomposition of the surface density

γm =
d

dt
log Cm

direct comparison 
with mode analysis

Cm =
∫ ∫ 2π

0 σ(r, ϕ)e−imϕdϕdr
∫ ∫ 2π

0 σ(r, ϕ)dϕdr
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Base disk, qD = 1

σ

log[σ - Σ]

Corotation
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Base disk, qD = 1

σ

log[σ - Σ]

Corotation
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Eigenvalue spectrum
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Models with gap
σ(r) = σ0e[−(r−R0)

2/w] ×
(

1− A∆2

(r −RP )2 + ∆2

)

Groove with depth A centered around RP and
characteristic width Δ

σ 
(r

)
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Models
We do not include the 
potential of the planet and 
carve a gap “ab initio.”

This singles out modes that 
are intrinsic to disk+groove 
vs. spiral wakes driven by the 
planet.?
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Models
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Disk with groove, qD = 0.63

σ

log[σ - Σ]

Corotation
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Disk with groove, qD = 0.63

σ

log[σ - Σ]

Corotation
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High mass
qD = 0.63

All disk models
Low mass

qD = 0.08no groove

with groove
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with groove



■ Outline ■ Introduction & Motivation ■ Methods ■ Results ■ Conclusions

! "! #! $! %! &! '! (!
!""

!"!

!)

!*

!(

!'

!&

!%

!$

!#

!"

!

+

,-
.
/0
#

/

/

1"2/3
4
/5/"

1#2/3
4
/5/!6'$7/.8--9:

1"#2/3
4
/5/!6'$

1$2/3
4
/5/!6$#7/.8--9:

1"$2/3
4
/5/!6$#

Groove mode 
outpaces the 
growth of the 
“base” disk

Instability growth [high qD]



■ Outline ■ Introduction & Motivation ■ Methods ■ Results ■ Conclusions

! "! #! $! %! &! '! (!
!""

!"!

!)

!*

!(

!'

!&

!%

!$

!#

!"

!

+

,-
.
/0
#

/

/
1%2/3

4
/5/!6"'7/.8--9:

1"%2/3
4
/5/!6"'

1&2/3
4
/5/!6"$7/.8--9:

1"&2/3
4
/5/!6"$

1'2/3
4
/5/!6!*7/.8--9:

1"'2/3
4
/5/!6!*

Base models 
cease to be 
unstable at qD = 
0.32.

Models with a 
groove are 
unstable down to 
qD = 0.08 (Q = 
2.76)!

Instability growth [low qD]



■ Outline ■ Introduction & Motivation ■ Methods ■ Results ■ Conclusions

Growth rates
• Disk models with a 
groove are unstable down 
to qD = 0.08; lower masses 
do not show resolved 
instabilities in the hydro 
simulations and have noisy 
EV spectra in mode 
analysis

• We believe the disks 
might be unstable at even 
lower masses, but our 
hydro code is too 
dissipative.
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Dependence on depth
• The growth rate depends on 
the depth of the groove, but 
levels off at density 
depression of ~80%
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Gap filling
The net effect of the non-
axisymmetric instabilities is
to redistribute disk mass and 
angular momentum.

Tendency to suppress the gap!

SI act similarly to an additional 
source of viscosity.
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Gap filling
The net effect of the non-
axisymmetric instabilities is
to redistribute disk mass and 
angular momentum.

Tendency to suppress the gap!

SI act similarly to an additional 
source of viscosity.
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Gap filling

tfill ∼
∆r2

ν

Estimate an order-of-
magnitude effective α
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Gap filling
Get α ≈ 0.13 for qD = 0.13

α ≈ 0.06 for qD = 0.08
tfill ∼

∆r2

αcsH

➨ This class of spiral instabilities can 
provide a huge source of viscosity!

➨ This source of additional viscosity 
would modify the gap-opening 
criterion...
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Type I - II transition mass
MP

M∗
≈ 2α2/3

(
M∗
Σr2

)1/3 ( cs

rΩ

)3

MP ≈ 4.5M⊕[0.01MJ ]

MP ≈ 20M⊕[0.06MJ ]

MP ≈ 60− 95M⊕[0.2− 0.3MJ ]

α ≈ 10-3

α ≈ 10-2

α ≈ 0.05 - 0.1

Signicant modification of the transition mass!
This is just a simplified estimation: the growth
rate depends on the groove depth...
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Conclusions
• We have studied a number of disk models through mode 
analysis and hydro simulations.

• Massive disk models possessing a groove in surface density 
were grossly unstable on a few dynamical timescales.

• Moderate mass groovy disks show a fast growing mode at 
masses down a factor of 4 with respect to disks without a 
groove. 

• The instability yields a very high effective viscosity; can close 
the gap.

• We will improve and confirm the results obtained by running 
a self-consistent simulation including the formation of the gap.
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Future
• The potential of the planet is not negligible, 
which will make it more complicate to 
separate spiral wakes launched by the planet 
and intrinsic modes of the disk
• More general density profiles and EOS will 
be unstable to a spectrum of interacting 
spiral modes 
• We need to follow the formation of the gap 
with a high-resolution, ab-initio hydro simulations 
with self-gravity.
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Thank you!



☻☻☻☻☻☻☻☻ ☻☻☻☻ ☻☻☻☻ ☻☻☻☻ ☻☻☻☻☻
Mass Estimation

• Continuum SED: 
Warm dust (only 1% of total mass, but highly opaque)

λλλλ ~ mm wavelength range

• Disks optically thin
• Typical disk mass: 

~ 0.01 Msun

comparable to the “Minimum 
Mass Solar Nebula”                 
(total mass of the original 
material of solar composition 
to form the planetary system)



Eigenvalue spectrum
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Density splitting

Ψ(R) = −4
∫ ∞

0
K

(√
4Rρ

(R + ρ)2

)
σ(ρ)ρdρ

R + ρ

Ψ(R) = −
∫ ∞

0
σ(ρ)ρdρ

∫ 2π

0

dϕ√
R + ρ− 2Rρ cos ϕ

Pierens & Hure’ 2005


