

Context: Under the appropriate balance between viscous diffusion and Type I torques, massive giant planets can carve a gap in the surrounding protoplanetary disk during formation. In analogy to the groove modes (Sellwood & Lin 1989) known to occur in the context of stellar dynamics when surface density depressions are present, we investigate whether the presence of a gap can excite fastgrowing spiral modes in moderate to low mass self-gravitating disks.

Procedure: We model the protoplanetary disk as a thin disk with surface density parametrization $\sigma = \sigma_0 e^{\left[-(r-R_0)^2/w\right]} \times \left(1 - \frac{A\Delta^2}{(r-R_P)^2 + \Delta^2}\right)$

(Gaussian profile with a Lorentzian gap of depth A, radius Rp and width Δ); this density profile has the advantage of possessing a single m=2 mode. For the purposes of simple modelization, we assume a polytropic EOS. We assess the growth rate and pattern speed of emerging modes by employing a linear analysis code, which solves a generalized eigenvalue matrix equation on a radial grid. We match the predicted linear growth and pattern speed against a 2D hydrodynamical simulation, finding very good agreement between the two codes in the linear growth regime.

Groove modes in self-gravitating protoplanetary disks

Results: We consider models spanning a range of q_D, with and without a gap ('base disks') [Fig. I]. We find that in massive disks the groove mode quickly outpaces instabilities in the same-mass base disk [Fig. 2, $q_D = 0.32$]. This instability is active even at masses lower than the $q_D < 0.1-0.2$ value at which they are assumed to occur [Tab. I]. The mass flux causes the gap to fill in, yielding an effective α in the range $\approx 0.16-0.04$. Since a forming giant planet can provide both the structure and the feedback cycle needed to excite groove modes, we speculate that the competition between the GI-induced torques and the planetary torques might lead to a modification of the gap-opening criterion. We plan to further constrain the lower mass limit using a more realistic density profile, EOS and a higher resolution code including the self-consistent diskplanet interaction.

_							
_	Model	q_D	A	Q_{min}	m	$\gamma_{lin}~(ar{\gamma}_{nl})$	$\Omega_P (\bar{\Omega}_P)$
	1	1	0	1.21	2	1.21(0.90)	2.78(2.69)
	2	0.63	0.90	0.67	2	2.31(2.14)	3.41(3.37)
	3	0.32	0.90	1.31	2	1.43(1.16)	3.18(3.05)
	4	0.16	0.90	1.92	2	0.73(0.65)	3.04(3.00)
	5	0.13	0.90	2.03	2	0.56(0.50)	3.02(2.89)
	6	0.08	0.90	2.24	2	$(0.28^{a,c})$	$(-0.1\dot{4}^c)$ †
	7	0.06	0.90	2.76	2		
	12	0.63	0	1.30	2	0.84 (0.70)	2.27(2.22)
	13	0.32	0	1.52	2	0.37(0.16, 0.31)	2.03(2.22)
	14	0.16	0	1.86	2	+	
	15	0.13	0	2.08	2	■ 	
	16	0.08	0	2.26	2		
	17	0.06	0	2.65	2		

ζ M

S. Meschiari and G. Laughlin University of California, Santa Cruz