
Groove modes in self-gravitating 
protoplanetary disks

Context: Under the appropriate balance 
between viscous diffusion and Type I torques, 
massive giant planets can carve a gap in the 
surrounding protoplanetary disk during 
formation.  In analogy to the groove modes 
(Sellwood & Lin 1989) known to occur in the 
context of stellar dynamics when surface 
density depressions are present,  we investigate 
whether the presence of a gap can excite fast-
growing spiral modes in moderate to low mass 
self-gravitating disks. 

Procedure:  We model the protoplanetary 
disk as a thin disk with surface density 
parametrization

(Gaussian profile with a Lorentzian gap of 
depth A, radius Rp and width Δ); this density 
profile has the advantage of possessing a single 
m=2 mode.   For the purposes of simple 
modelization, we assume a polytropic EOS.  
We assess the growth rate and pattern speed 
of emerging modes by employing a linear 
analysis code, which solves a generalized 
eigenvalue matrix equation on a radial grid.  
We match the predicted linear growth and 
pattern speed against a 2D hydrodynamical 
simulation, finding very good agreement 
between the two codes in the linear growth 
regime. 

σ = σ0e
[−(r−R0)

2/w] ×
�

1− A∆2

(r −RP )2 + ∆2

�

Results:  We consider models spanning a range of 
qD, with and without a gap (‘base disks’) [Fig. 1]. We 
find that in massive disks the groove mode quickly 
outpaces instabilities in the same-mass base disk 
[Fig. 2, qD = 0.32].  This instability is active even at 
masses lower than the qD < 0.1-0.2 value at which 
they are assumed to occur [Tab. 1].  The mass flux 
causes the gap to fill in, yielding an effective α in 
the range ≈ 0.16-0.04. Since a forming giant planet 
can provide both the structure and the feedback 
cycle needed to excite groove modes, we speculate 
that the competition between the GI-induced 
torques and the planetary torques might lead to a 
modification of the gap-opening criterion. We plan 
to further constrain the lower mass limit using a 
more realistic density profile, EOS and a higher 
resolution code including the self-consistent disk-
planet interaction.
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ratios to assess the relevance of this GI to the realistic
disk masses observed.

2. PROCEDURE

We employ a two-dimensional hydrodynamical grid
code for following the evolution of a thin, self-gravitating
disk. The continuity and Euler equations in cylindrical
coordinates are solved using a second-order van Leer type
scheme, coupled with time stepping that is first-order ac-
curate. The basic difference equations are given in Stone
& Norman (1992). The self-gravity of the disk is ob-
tained by applying the Fourier convolution theorem to
the potential dictated by the Poisson equation (Binney
& Tremaine 1987). The details of the hydrodynamical
code are described in Laughlin et al. (1997) and related
papers.

We adopt the following parametrization for the surface
density of the disk:

σ(r) = σ0e[
−(r−R0)

2/w] ×

(

1 −
A∆2

(r − RP )2 + ∆2

)

, (1)

which represents a Gaussian profile multiplied by a
Lorentzian profile of depth A, characteristic semi-width
∆ and central position RP ; for A = 0, this profile is
the “reference disk” considered by Laughlin & Rozy-
czka (1996). The disk model used throughout this letter
has no pretense of actually representing a protoplanetary
disk faithfully, but has the advantage of possessing a sin-
gle m = 2 mode that is very clearly identifiable both
in semianalytic calculations and in the nonlinear simula-
tions. The choice of a Lorentzian profile to represent the
gap is arbitrary as well, but avoids the numerical diffi-
culties of considering square wells and follows Sellwood
& Kahn (1991).

We take w = 0.03, R0 = 0.25 and an inner disk
edge of 0.05. We assume a polytropic equation of state,
P = Kσγ with the polytropic exponent γ = 2. Again,
this model is chosen largely for illustrative purposes, and
allows us to avoid an energy equation. The characteristic
width ∆ is meant to represent a typical gap width; the
chosen value of 0.07 can be derived from the approximate
scaling

2∆/rp ∼ 0.29q2/3R1/3, (2)

(e.g. Varnière et al. 2004) with R ≈ 5 × 105 and q =
2 × 10−3. The set of units used in the code takes the
outer grid radius RD and the gravitational constant G
equal to unity and M∗ = 0.5. This corresponds to a
time unit Ω−1

D ≈ 228 yr (angular frequency at the outer
edge of the disk) for a “typical” set of disk parameters
(M∗ = 2 × 1033 g, RD = 100 AU).

To quantify the strength, pattern speed and growth
rate of each spiral mode, we compute the Fourier decom-
position of the surface density, defined as

am =
1

2π

∫ 2π

0
σ(r, Φ)e−imΦ, dΦ (3)

for a mode number m. The local growth rate (e-folding
time) of a disk mode is given by

γm(r) =
d

dt
log

am

a0
=

d

dt
log cm, (4)

TABLE 1

Model qD A Qmin m γlin (γ̄nl) ΩP (Ω̄P )

1 1 0 1.21 2 1.21 (0.90) 2.78 (2.69)
2 0.63 0.90 0.67 2 2.31 (2.14) 3.41 (3.37)
3 0.32 0.90 1.31 2 1.43 (1.16) 3.18 (3.05)
4 0.16 0.90 1.92 2 0.73 (0.65) 3.04 (3.00)
5 0.13 0.90 2.03 2 0.56 (0.50) 3.02 (2.89)
6 0.08 0.90 2.24 2 (0.28a,c) (-0.14c) †
7 0.06 0.90 2.76 2 ‡
12 0.63 0 1.30 2 0.84 (0.70) 2.27 (2.22)
13 0.32 0 1.52 2 0.37 (0.16, 0.31) 2.03 (2.22)
14 0.16 0 1.86 2 ‡
15 0.13 0 2.08 2 ‡
16 0.08 0 2.26 2 ‡
17 0.06 0 2.65 2 ‡

Note. — † This mode has two linear phases (a, b) and two
saturation phases (c, d); see Figure. During phase b the mode is
counterrotating and leading; at saturation, the mode reverses its
rotation. The growth rates reported are average values measured
during each phase. ‡ These models do not show appreciable mode
growth in either the linear or the fluid simulation.

while the phase of a disturbance is defined as

Φm(r) = tan−1

[

Im(−am)

Re(am)

]

. (5)

The local pattern speed is then given by ΩP = (1/m)Φ̇m.
Finally, a global measure of the growth of a particular
mode is given by integrating the m-th Fourier ampli-
tude am over the radial range and normalizing to the
azimuthal average of the surface density:

Cm =

∣
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∫ RD

Ri
am(r)dr

∫ RD

Ri
a0(r)dr

∣
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∣

∣

∣

. (6)

The growth rate and pattern speed that emerge from
the hydrodynamical simulation are checked against a lin-
ear numerical analysis code we developed, as described
e. g. in Laughlin et al. (1997), which solves a matrix
equation akin to a generalized eigenvalue problem; the
solution is valid in the linear regime and yields a com-
plex eigenvalue, which indicates the pattern speed ΩP
and growth rate γ, and a complex eigenvector, which de-
scribes the radial variation and local spiral phase angle
of the mode. Comparison with the full nonlinear simu-
lations enables us to check the consistency and accuracy
of the two independent approaches.

3. COMPUTER SIMULATIONS

Table (1) lists the disk models considered in this letter.
We have first set up a “base” disk with surface density
given by Equation 1, with A = 0, qD = MD/Mstar = 1
and Qmin = 1.21 (Model 1); this sets the normalization
constant σ0 and the polytropic constant K. The equilib-
rium was disrupted with a random density perturbation
of order 0.001 σ(r). The grid covers the cylindrical coor-
dinates with 256 logarithmically spaced zones in radius
and 256 equally spaced azimuthal zones. Each model
is evolved for at least 100 time units, although the re-
flective boundaries muddle the nonlinear evolution once
the wave reaches the outer part of the disk. Figure (2),
left panel, shows the evolution of the surface density nor-
malized to the azimuthal average Σ(r) = log (σ(r)/σ̄(r)).
In accordance with the previous investigations and with


